

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

II Year - I Semester		L	Т	Р	С
		3	0	0	3
THERMODYNAMICS					

Course Objectives:

To impart the knowledge of the thermodynamic laws and principles so as to enable the student to prepare an energy audit of any mechanical system that exchange heat and work with the surroundings.

UNIT – I

Introduction: Basic Concepts : System, boundary, Surrounding, Universe, control volume, Types of Systems, Macroscopic and Microscopic viewpoints, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process - Reversible, Quasi static & Irreversible Processes, cycle, Causes of Irreversibility. Energy in State and in Transition - Types, Work and Heat, Point and Path function.

Zeroth Law of Thermodynamics – Concept of Temperature – Principles of Thermometry –Reference Points – Const. Volume gas Thermometer – Scales of Temperature.

UNIT – II

Joule's Experiments – First law of Thermodynamics – Corollaries – First law applied to a Process – applied to a flow system –Energy balance for closed systems-Specific heats- Internal energy, Enthalpy and Specific heats of Solids, liquids and Ideal gases, Some steady flow energy equation applied to Nozzle, Turbine, Compressor and heat exchanger devices, PMM-I.

UNIT III

Limitations of the First Law – Thermal Reservoir, Heat Engine, Heat pump, Parameters of performance, Second Law of Thermodynamics, Kelvin-Planck and Clausius Statements and their Equivalence, Corollaries, PMM of Second kind, Carnot cycle and its specialties, Carnot's theorem, Thermodynamic scale of Temperature.

Clausius Inequality, Entropy, Principle of Entropy Increase, Availability and Irreversibility (Basic definitions) – Thermodynamic Potentials, Gibbs and Helmholtz Functions, Maxwell Relations – Elementary Treatment of the Third Law of Thermodynamics.

UNIT IV

Pure Substances, P-V-T- surfaces, T-S and h-s diagrams, Mollier Charts, Phase Transformations – Triple point and critical point, properties during change of phase, Dryness Fraction – Clausius – Clapeyron Equation, Property tables. Various Thermodynamic processes and energy Transfer – Steam Calorimetry.

UNIT – V

Ideal Gas equation of state- Compressibility factor- Van der Waals equation of state- Beattie-Bridgeman equation of state- Benedict-Webb-Rubin equation of state- Viral equation of state- compressibility charts – variable specific heats .

Mixtures of perfect Gases – Dalton's Law of partial pressure, Avogadro's Laws of additive volumes-Equivalent Gas constant and Molecular Internal Energy, Enthalpy, Specific Heat and Entropy of Mixture of Perfect Gases and Vapour.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA

KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF MECHANICAL ENGINEERING

Psychrometric Properties – Dry bulb Temperature, Wet Bulb Temperature, Dew point Temperature, Thermodynamic Wet Bulb Temperature, Specific Humidity, Relative Humidity, Saturated Air, Vapour pressure, Degree of saturation – Adiabatic Saturation , Carrier's Equation – Psychrometric chart.

TEXT BOOKS:

- 1. Engineering Thermodynamics, PK Nag 6th Edn , McGraw Hill.
- 2. Fundamentals of Thermodynamics Sonntag, Borgnakke, Van Wylen, 6th Edn, Wiley

REFERENCES:

- 1. Thermodynamics by Prasanna Kumar, Pearson Publishers
- 2. Engineering Thermodynamics Jones & Dugan PHI
- 3. Thermodynamics, an Engineering Approach, Yunus A Cenegel, Michael A Boles, 8th Edn in SI Units, McGraw Hill.
- 4. Thermodynamics J.P.Holman , McGrawHill
- 5. An Introduction to Thermodynamics Y.V.C.Rao Universities press.
- 6. Thermodynamics W.Z.Black & J.G.Hartley, 3rd Edn Pearson Publ.
- 7. Engineering Thermodynamics D.P.Misra, Cengage Publ.
- 8. Engineering Thermodynamics P.Chattopadhyay Oxford Higher Edn Publ.

COURSE OUTCOMES:

After undergoing the course the student is expected to learn

- CO1: Basic concepts of thermodynamics
- CO2: Laws of thermodynamics
- CO3: Concept of entropy
- CO4: Property evaluation of vapors and their depiction in tables and charts
- CO5: Evaluation of properties of perfect gas mixtures.